MrisNet: Robust Ship Instance Segmentation in Challenging Marine Radar Environments

Author:

Ma Feng123ORCID,Kang Zhe123ORCID,Chen Chen4,Sun Jie5,Deng Jizhu6

Affiliation:

1. State Key Laboratory of Maritime Technology and Safety, Wuhan University of Technology, Wuhan 430063, China

2. National Engineering Research Center for Water Transport Safety, Wuhan University of Technology, Wuhan 430063, China

3. Intelligent Transportation Systems Research Center, Wuhan University of Technology, Wuhan 430063, China

4. School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China

5. Nanjing Smart Water Transportation Technology Co., Ltd., Nanjing 210028, China

6. Nanjing Port Co., Ltd., Nanjing 210011, China

Abstract

In high-traffic harbor waters, marine radar frequently encounters signal interference stemming from various obstructive elements, thereby presenting formidable obstacles in the precise identification of ships. To achieve precise pixel-level ship identification in the complex environments, a customized neural network-based ship segmentation algorithm named MrisNet is proposed. MrisNet employs a lightweight and efficient FasterYOLO network to extract features from radar images at different levels, capturing fine-grained edge information and deep semantic features of ship pixels. To address the limitation of deep features in the backbone network lacking detailed shape and structured information, an adaptive attention mechanism is introduced after the FasterYOLO network to enhance crucial ship features. To fully utilize the multi-dimensional feature outputs, MrisNet incorporates a Transformer structure to reconstruct the PANet feature fusion network, allowing for the fusion of contextual information and capturing more essential ship information and semantic correlations. In the prediction stage, MrisNet optimizes the target position loss using the EIoU function, enabling the algorithm to adapt to ship position deviations and size variations, thereby improving segmentation accuracy and convergence speed. Experimental results demonstrate MrisNet achieves high recall and precision rates of 94.8% and 95.2%, respectively, in ship instance segmentation, outperforming various YOLO and other single-stage algorithms. Moreover, MrisNet has a model parameter size of 13.8M and real-time computational cost of 23.5G, demonstrating notable advantages in terms of convolutional efficiency. In conclusion, MrisNet accurately segments ships with different spot features and under diverse environmental conditions in marine radar images. It exhibits outstanding performance, particularly in extreme scenarios and challenging interference conditions, showcasing robustness and applicability.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3