Topics in structure-preserving discretization

Author:

Christiansen Snorre H.,Munthe-Kaas Hans Z.,Owren Brynjulf

Abstract

In the last few decades the concepts of structure-preserving discretization, geometric integration and compatible discretizations have emerged as subfields in the numerical approximation of ordinary and partial differential equations. The article discusses certain selected topics within these areas; discretization techniques both in space and time are considered. Lie group integrators are discussed with particular focus on the application to partial differential equations, followed by a discussion of how time integrators can be designed to preserve first integrals in the differential equation using discrete gradients and discrete variational derivatives.Lie group integrators depend crucially on fast and structure-preserving algorithms for computing matrix exponentials. Preservation of domain symmetries is of particular interest in the application of Lie group integrators to PDEs. The equivariance of linear operators and Fourier transforms on non-commutative groups is used to construct fast structure-preserving algorithms for computing exponentials. The theory of Weyl groups is employed in the construction of high-order spectral element discretizations, based on multivariate Chebyshev polynomials on triangles, simplexes and simplicial complexes.The theory of mixed finite elements is developed in terms of special inverse systems of complexes of differential forms, where the inclusion of cells corresponds to pullback of forms. The theory covers, for instance, composite piecewise polynomial finite elements of variable order over polyhedral grids. Under natural algebraic and metric conditions, interpolators and smoothers are constructed, which commute with the exterior derivative and whose product is uniformly stable in Lebesgue spaces. As a consequence we obtain not only eigenpair approximation for the Hodge–Laplacian in mixed form, but also variants of Sobolev injections and translation estimates adapted to variational discretizations.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics,Numerical Analysis

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3