Flexible rotor blade dynamics for helicopter aeromechanics including comparisons with experimental data

Author:

Goulos I.,Pachidis V.,Pilidis P.

Abstract

AbstractThis paper presents the development of a mathematical model for the implementation of flexible rotor blade dynamics in real-time helicopter aeromechanics applications. A Lagrangian approach is formulated for the rapid estimation of natural vibration characteristics of nonuniform rotor blades. A matrix/vector formulation is proposed for the treatment of elastic blade kinematics in the time-domain. In order to overcome the classical hurdles of time-accurate simulation and establish applicability in real-time, a novel, second-order accurate, finite-difference scheme is employed for the numerical discretisation of elastic blade motion. The proposed rotor dynamics model is coupled with a finite-state induced flow and an unsteady blade element aerodynamics model. The combined formulation is implemented in a helicopter flight mechanics simulation code. The integrated approach is deployed in order to investigate rotor blade resonant frequencies, trim control angles, oscillatory blade loads and induced vibration for a hingeless and an articulated helicopter rotor. Extensive comparisons are carried out with wind tunnel and flight test measurements, and non-real-time comprehensive analysis methods. Good agreement with measured data is exhibited considering primarily the low-frequency harmonic components of oscillatory loading. It is shown that, the developed methodology can be utilised for real-time simulation on a typical computer with sufficient modelling fidelity for accurate estimation of oscillatory blade loads.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference49 articles.

1. Shupe N. A Study on the dynamic motions of hingeless rotored helicopters, 1970, US Army Electronics Command, TR ECOM-3323.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3