Modelling the aeroelastic response and flight dynamics of a hingeless rotor helicopter including the effects of rotor-fuselage aerodynamic interaction

Author:

Goulos I.

Abstract

AbstractThis paper presents a mathematical approach for the simulation of rotor-fuselage aerodynamic interaction in helicopter aeroelasticity and flight dynamics applications. A Lagrangian method is utilised for the numerical analysis of rotating blades with nonuniform structural properties. A matrix/vector-based formulation is developed for the treatment of elastic blade kinematics in the time-domain. The combined method is coupled with a finite-state induced flow model, an unsteady blade element aerodynamics model, and a dynamic wake distortion model. A three-dimensional, steady-state, potential flow, source-panel method is employed for the prediction of induced flow perturbations in the vicinity of the fuselage due to its presence in the free-stream and within the rotor wake. The combined rotor-fuselage model is implemented in a nonlinear flight dynamics simulation code. The integrated approach is deployed to investigate the effects of rotor-fuselage aerodynamic interaction on trim performance, stability and control derivatives, oscillatory structural blade loads, and nonlinear control response for a hingeless rotor helicopter modelled after the Eurocopter Bo105. Good agreement is shown between flow-field predictions and experimental measurements for a scaled-down isolated fuselage model. The proposed numerical approach is shown to be suitable for real-time flight dynamics applications with simultaneous prediction of structural blade loads, including the effects of rotor-fuselage aerodynamic interaction.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3