On the Aerodynamic Design of Slender Wings

Author:

Maskell E. C.,Weber J.

Abstract

Summary:—Since flow separation occurs readily from a highly swept leading edge, but gives rise in general to a steady flow, it is proposed that the rational approach to the aerodynamic design of slender wings is to attempt to control, rather than to suppress, these separations. This leads to the suggestion that the leading edges should be sharp, and that the wing should be shaped so as to make them attachment lines at one attitude (the design attitude) at which classical wing theory can be applied. It is argued, further, that if the leading edge separations are to develop regularly with change of attitude of the wing, separation must occur only from the trailing edge at the design attitude; and the velocity field favourable to boundary layer development without separation forward of the trailing edge is discussed. Subject to the restrictions thus imposed on the design, low drag is sought at the design attitude. This leads to the consideration of a particular class of doubly curved mean surfaces satisfying the leading edge condition, onto which thickness distributions are superposed so as to provide favourable velocity fields together with low drag. A number of examples are considered, using slender thin wing theory for flexibility, to illustrate the manner in which plan form and thickness distributions affect the pressure distribution, and to indicate the relatively high lift/drag ratios which seem feasible. Some consideration is given to the limitations of the theory used and to the further developments which seem desirable.

Publisher

Cambridge University Press (CUP)

Reference19 articles.

1. The Minimum Drag of Thin Wings in Frictionless Flow

2. A theory of the flow past a slender delta wing with leading edge separation

3. Weber J. (1957). Slender Delta Wings With Sharp Edges at Zero Lift. Unpublished M.o.S. Report), May 1957.

4. Supersonic Wave Drag of Thin Airfoils

5. Drougge G. , Larson P. D. (1956). Pressure Measurements and Flow Investigation on Delta Wings at Supersonic Speed. F.F.A. Report No. 57, November 1956.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3