Author:
Fazelzadeh S. A.,Mazidi A.,Rahmati A. R.,Marzocca P.
Abstract
Abstract
The aeroelastic modeling and flutter characteristics of a shear deformable wing/stores configuration under pull-up angular velocity is investigated. An isotropic non-uniform wing, which structural model incorporates flexibility in transverse shear and warping effects, is considered. The aeroelastic governing equations and boundary conditions are determined via Hamilton’s variational principle. In order to exactly consider the span wise location and properties of the attached stores the generalised function theory is used. The partial differential equations are transformed into a set of eigenvalue equations through the extended Galerkin’s approach. Numerical simulation highlighting the effects of the pull-up angular velocity and store parameters and configurations, such as mass ratio and their attachment locations, on the flutter speed are presented. The results of flutter analyses are validated with the published results and good agreement is observed. Furthermore, the procedure for an optimal deployment of stores is obtained for the case of the wing with four stores.
Publisher
Cambridge University Press (CUP)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献