Author:
Pachidis V.,Pilidis P.,Marinai L.,Templalexis I.
Abstract
Abstract
In commercially available gas turbine performance simulation tools, individual engine components are typically represented with non-dimensional maps of experimental or default data. In those cases where actual component characteristics are not available and default characteristics are used instead, conventional tools can deviate substantially at off-design and transient conditions. Similarly, when real component characteristics are available, conventional engine cycle simulation tools can not predict the performance of the engine at other than nominal conditions satisfactorily, or account for the impact of changes in component geometry.
This study looked into the full integration of two-dimensional streamline curvature component models with a low fidelity cycle program. Firstly, the obtained engine performance was compared against the one calculated based on default component characteristics. As a second case study, a range of flight Mach numbers and angles of attack were examined together with the effect of three different intake lip geometries on the performance of a notional, two-spool, low-bypass ratio, military engine. Two-dimensional models were used in the engine cycle analysis to provide a more accurate, physics- and geometry-based estimate of intake and fan performances.
The analysis carried out by this study demonstrated relative changes in the predicted engine performance larger than 1%. For briefness, representative results are presented and discussed in this paper for one flight Mach number and angle of attack setting. More importantly, this research effort established the necessary methodology and technology required towards a full, two-dimensional engine cycle analysis at an affordable computational resource in the very short term.
Publisher
Cambridge University Press (CUP)
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献