Towards a full two dimensional gas turbine performance simulator

Author:

Pachidis V.,Pilidis P.,Marinai L.,Templalexis I.

Abstract

Abstract In commercially available gas turbine performance simulation tools, individual engine components are typically represented with non-dimensional maps of experimental or default data. In those cases where actual component characteristics are not available and default characteristics are used instead, conventional tools can deviate substantially at off-design and transient conditions. Similarly, when real component characteristics are available, conventional engine cycle simulation tools can not predict the performance of the engine at other than nominal conditions satisfactorily, or account for the impact of changes in component geometry. This study looked into the full integration of two-dimensional streamline curvature component models with a low fidelity cycle program. Firstly, the obtained engine performance was compared against the one calculated based on default component characteristics. As a second case study, a range of flight Mach numbers and angles of attack were examined together with the effect of three different intake lip geometries on the performance of a notional, two-spool, low-bypass ratio, military engine. Two-dimensional models were used in the engine cycle analysis to provide a more accurate, physics- and geometry-based estimate of intake and fan performances. The analysis carried out by this study demonstrated relative changes in the predicted engine performance larger than 1%. For briefness, representative results are presented and discussed in this paper for one flight Mach number and angle of attack setting. More importantly, this research effort established the necessary methodology and technology required towards a full, two-dimensional engine cycle analysis at an affordable computational resource in the very short term.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3