Preliminary Design of Hybrid-Electric Propulsion Systems for Emerging Urban Air Mobility Rotorcraft Architectures

Author:

Saias Chana Anna1,Goulos Ioannis1,Roumeliotis Ioannis1,Pachidis Vassilios1,Bacic Marko2

Affiliation:

1. Propulsion Engineering Centre, School of Aerospace Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK

2. Rolls-Royce plc, P.O. Box 31, Derby DE24 8BJ, UK

Abstract

Abstract The increasing demands for air-taxi operations together with the ambitious targets for reduced environmental impact have driven significant interest in alternative rotorcraft architectures and propulsion systems. The design of hybrid-electric propulsion systems (HEPSs) for rotorcraft is seen as being able to contribute to those goals. This work aims to conduct a comprehensive design and tradeoff analysis of hybrid powerplants for rotorcraft, targeting enhanced payload-range capability and fuel economy. An integrated methodology for the design, performance assessment, and optimal implementation of HEPSs for conceptual rotorcraft has been developed. A multidisciplinary approach is devised comprising models for rotor aerodynamics, flight dynamics, HEPS performance, and weight estimation. All models are validated using experimental or flight test data. The methodology is deployed for the assessment of a hybrid-electric tilt-rotor, modeled after the NASA XV-15. This work targets to provide new insight into the preliminary design and sizing of optimally designed HEPSs for novel tilt-rotor aircraft. The paper demonstrates that at present, current battery energy densities (250 Wh/kg) severely limit the degree of hybridization if a fixed useful payload and range are to be achieved. However, it is also shown that if advancements in battery energy density to 500 Wh/kg are realized, a significant increase in the level of hybridization and hence reduction of fuel burned and carbon output relative to the conventional configuration can be attained. The methodology presented is flexible enough to be applied to alternative rotorcraft configurations and propulsion systems.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference65 articles.

1. eVTOL Passenger Acceptance

2. Realising Europe's Vision for Aviation: Strategic Research & Innovation Agenda;Advisory Council for Aviation Research and Innovation in Europe (ACARE),2012

3. NASA N+3 Subsonic Ultra Green Aircraft Research SUGAR Final Review,2010

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3