Unsteady aerodynamic model of a cargo container for slung-load simulation

Author:

Cicolani L. S.,da Silva J. G. A.,Duque E. P. N.,Tischler M. B.

Abstract

Abstract The problem of simulation models capable of predicting the aerodynamic instability of helicopter slung-load cargo containers and bluff bodies is addressed. Instability for these loads is known to depend on unsteady frequency-dependent aerodynamics, but simulation models that include the unsteady aerodynamics do not currently exist. This paper presents a method for generating such models using computational fluid dynamics (CFD) to generate forced-oscillation aerodynamic data and frequency domain system identification techniques to generate a frequency response from the CFD data and to identify a transfer function fit to the frequency response. The method is independent of the responsible flow phenomenon and is expected to apply to bluff-bodies generally. Preliminary results are presented for the case of the 6- by 6- by 8-ft CONEX (container express) cargo container. The present work is based on two-dimensional (2D) aerodynamic data for the CONEX side force and yaw moment generated by a forced oscillation in which frequency is varied smoothly over the range of interest. A first-order rational polynomial transfer function is found adequate to fit the aerodynamics, and this is shown to provide a good match with flight test data for the yawing motion of the CONEX.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3