Abstract
AbstractSmall-amplitude perturbations are governed by the linearized Navier–Stokes equations, which are, for a parallel or nearly parallel shear flow, customarily reduced to the Orr–Sommerfeld (O-S) and Squire equations. In this paper, we consider continuous spectra (CS) of the O-S and Squire operators for the Blasius and asymptotic suction boundary layers, and address the issue of whether and when continuous modes can represent free-stream vortical disturbances and their entrainment into the shear layer. For the Blasius boundary layer, we highlight two particular properties of the CS: (i) the eigenfunction of a continuous mode simultaneously consists of two components with wall-normal wavenumbers $\pm {k}_{2} $, a phenomenon which we refer to as ‘entanglement of Fourier components’; and (ii) for low-frequency disturbances the presence of the boundary layer forces the streamwise velocity in the free stream to take a much larger amplitude than those of the transverse velocities. Both features appear to be non-physical, and cast some doubt about the appropriateness of using CS to characterize free-stream vortical disturbances and their entrainment into the boundary layer, a practice that has been adopted in some recent studies of bypass transition. A high-Reynolds-number asymptotic description of continuous modes and entrainment is present, and it shows that the entanglement is a result of neglecting non-parallelism, which has a leading-order effect on the entrainment. When this effect is included, entanglement disappears, and moreover the streamwise velocity is significantly amplified in the edge layer when ${R}^{- 1} \ll \omega \ll 1$, where $R$ is the Reynolds number based on the local boundary-layer thickness. For the asymptotic suction boundary layer, which is an exactly parallel flow, both temporal and spatial CS may be defined mathematically. However, at a finite $R$ neither of them represents the physical process of free-stream vortical disturbances penetrating into the boundary layer. The latter must instead be characterized by a peculiar type of continuous modes whose eigenfunctions increase exponentially with the distance from the wall. In the limit $R\gg 1$, all three types of CS are identical at leading order, and hence can be used to represent free-stream vortical disturbances and their entrainment. Low-frequency disturbances are found to generate a large-amplitude streamwise velocity in the boundary layer, which is reminiscent of longitudinal streaks.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献