Author:
Semeraro Onofrio,Bagheri Shervin,Brandt Luca,Henningson Dan S.
Abstract
AbstractActive linear control is applied to delay the onset of laminar–turbulent transition in the boundary layer over a flat plate. The analysis is carried out by numerical simulations of the nonlinear, transitional regime. A three-dimensional, localized initial condition triggering Tollmien–Schlichting waves of finite amplitude is used to numerically simulate the transition to turbulence. Linear quadratic Gaussian controllers based on reduced-order models of the linearized Navier–Stokes equations are designed, where the wall sensors and the actuators are localized in space. A parametric analysis is carried out in the nonlinear regime, for different disturbance amplitudes, by investigating the effects of the actuation on the flow due to different distributions of the localized actuators along the spanwise direction, different sizes of the actuators and the effort of the controllers. We identify the range of parameters where the controllers are effective and highlight the limits of the device for high amplitudes and strong control action. Despite the fully linear control approach, it is shown that the device is effective in delaying the onset of laminar–turbulent transition in the presence of packets characterized by amplitudes $a\approx 1\hspace{0.167em} \% $ of the free stream velocity at the actuator location. Up to these amplitudes, it is found that a proper choice of the actuators positively affects the performance of the controller. For a transitional case, $a\approx 0. 20\hspace{0.167em} \% $, we show a transition delay of $\Delta {\mathit{Re}}_{x} = 3. 0\times 1{0}^{5} $.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献