Reactive control of second Mack mode in a supersonic boundary layer with free-stream velocity/density variations

Author:

Nibourel PierreORCID,Leclercq ColinORCID,Demourant FabriceORCID,Garnier EricORCID,Sipp DenisORCID

Abstract

We consider closed-loop control of a two-dimensional supersonic boundary layer at $M=4.5$ that aims at reducing the linear growth of second Mack mode instabilities. These instabilities are first characterized with local spatial and global resolvent analyses, which allow us to refine the control strategy and to select appropriate actuators and sensors. After linear input–output reduced-order models have been identified, multi-criteria structured mixed $H_{2}$ / $H_{\infty }$ synthesis allows us to fix beforehand the controller structure and to minimize appropriate norms of various transfer functions: the $H_{2}$ norm to guarantee performance (reduction of perturbation amplification in nominal condition), and the $H_{\infty }$ norm to maintain performance robustness (with respect to sensor noise) and stability robustness (with respect to uncertain free-stream velocity/density variations). Both feedforward and feedback set-ups, i.e. with estimation sensor placed respectively upstream/downstream of the actuator, allow us to maintain the local perturbation energy below a given threshold over a significant distance downstream of the actuator, even in the case of noisy estimation sensors or free-stream density variations. However, the feedforward set-up becomes completely ineffective when convective time delays are altered by free-stream velocity variations of $\pm$ 5 %, which highlights the strong relevance of the feedback set-up for performance robustness in convectively unstable flows.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3