Second-mode attenuation and cancellation by porous coatings in a high-speed boundary layer

Author:

Brès Guillaume A.,Inkman Matthew,Colonius Tim,Fedorov Alexander V.

Abstract

AbstractNumerical simulations of the linear and nonlinear two-dimensional Navier–Stokes equations, and linear stability theory are used to parametrically investigate hypersonic boundary layers over ultrasonic absorptive coatings. The porous coatings consist of a uniform array of rectangular pores (slots) with a range of porosities and pore aspect ratios. For the numerical simulations, temporally (rather than spatially) evolving boundary layers are considered and we provide evidence that this approximation is appropriate for slowly growing second-mode instabilities. We consider coatings operating in the typical regime where the pores are relatively deep and acoustic waves and second-mode instabilities are attenuated by viscous effects inside the pores, as well as regimes with phase cancellation or reinforcement associated with reflection of acoustic waves from the bottom of the pores. These conditions are defined as attenuative and cancellation/reinforcement regimes, respectively. The focus of the present study is on the cases which have not been systematically studied in the past, namely the reinforcement regime (which represents a worst-case scenario, i.e. minimal second-mode damping) and the cancellation regime (which corresponds to the configuration with the most potential improvement). For all but one of the cases considered, the linear simulations show good agreement with the results of linear instability theory that employs an approximate porous-wall boundary condition, and confirm that the porous coating stabilizing performance is directly related to their acoustic scattering performance. A particular case with relatively shallow pores and very high porosity showed the existence of a shorter-wavelength instability that was not initially predicted by theory. Our analysis shows that this new mode is associated with acoustic resonances in the pores and can be more unstable than the second mode. Modifications to the theoretical model are suggested to account for the new mode and to provide estimates of the porous coating parameters that avoid this detrimental instability. Finally, nonlinear simulations confirm the conclusions of the linear analysis; in particular, we did not observe any tripping of the boundary layer by small-scale disturbances associated with individual pores.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3