Experimental Study on Hypersonic Double-Wedge Induced Flow Based on Plasma Active Actuation Array

Author:

Yang Bo12,Yang Hesen3ORCID,Zhao Ning1,Liang Hua3ORCID,Su Zhi3,Zhang Dongsheng3

Affiliation:

1. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. Hypervelocity Aerodynamics Institute of China Aerodynamics Research and Development Center, Mianyang 621000, China

3. National Key Lab of Aerospace Power System and Plasma Technology, Air Force Engineering University, Xi’an 710038, China

Abstract

The double-wedge configuration is a typical characteristic shape of the rudder surface of high-speed aircraft. The impact of the shock wave/boundary layer interaction and the shock wave/shock wave interaction resulting from the double wedge on aircraft aerodynamics cannot be ignored. The aerodynamic performance of the aircraft would be seriously affected. Accordingly, to reduce the wave drag, and to relieve the thermal load and pressure load, flow control is required for the shock wave/shock wave interaction and the shock wave/boundary layer interaction induced by the double-wedge configuration. In this paper, double-wedge shock wave/shock wave interaction is controlled by a high-energy surface arc discharge array and observed by high-speed schlieren flow field measurement at Mach 8. The 30-channel discharge array is set on the primary wedge plane, and actuation is generated. Hypersonic V shock wave/shock wave interaction is effectively controlled by the shock wave array induced by the high-energy surface arc discharge array, which makes the shock wave/shock wave interaction structure disappear or intermittent. The potential control mechanism is to reduce strong shock wave interaction by transforming the type of shock wave interaction. Therefore, the ability of plasma array actuation to control complex shock wave/shock wave interaction is verified, which provides a new method for hypersonic shock wave/shock wave interaction control.

Funder

National Science and Technology Major Project

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3