Wave turbulence in a rotating channel

Author:

Scott Julian F.

Abstract

AbstractThis paper describes wave-turbulence closure and its consequences for rapidly rotating (i.e. small Rossby number) turbulence confined by two infinite, parallel walls perpendicular to the rotation axis. Expressing the flow as a combination of inertial waveguide modes leads to a spectral matrix, whose diagonal elements express the distribution of energy over modes and whose off-diagonal elements represent correlations between modes of different orders. In preparation for wave-turbulence closure, the flow is decomposed into two-dimensional and wave components. The former is found to evolve as if it were a classical, two-dimensional, non-rotating flow, but with wall friction due to Ekman pumping by the boundary layers. Evolution equations for the wave-component elements of the spectral matrix are derived using a wave-turbulence approach. Detailed analysis of these equations shows that, surprisingly, the two-dimensional component has no effect on wave-component energetics. As expected for wave turbulence, energy transfer between wave modes is via resonant triads and takes place at times $O(\varepsilon ^{-2})$ multiples of the rotational period, where $\varepsilon $ is the Rossby number. Despite playing no role in wave-mode energetics, the two-dimensional component produces decay of the off-diagonal elements of the spectral matrix on a time scale that is small compared with $O(\varepsilon ^{-2})$ rotation periods. There are thus three asymptotically distinct stages in the evolution of the turbulence in the limit of small Rossby number: the two-dimensional flow begins to evolve at the usual large-eddy turnover time scale ($O(\varepsilon ^{-1})$ multiples of the rotation period) and continues to develop thereafter. This is followed by decorrelation of different wave orders and finally evolution of the wave energy spectra due to resonant interactions.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3