A multiple time scale approach for anisotropic inertial wave turbulence

Author:

Galtier SébastienORCID

Abstract

Wave turbulence is the study of the long-time statistical behaviour of equations describing a set of weakly nonlinear interacting waves. Such a theory, which has a natural asymptotic closure, allows us to probe the nature of turbulence more deeply than the exact Kolmogorov laws by rigorously proving the direction of the cascade and the existence of an inertial range, predicting stationary spectra for conserved quantities, or evaluating the Kolmogorov constant. An emblematic example is given by fast rotating fluids for which a wave turbulence theory has been derived by Galtier (Phys. Rev. E, vol. 68, issue 1, 2003, p. 015301). This work involves non-trivial analytical developments for a problem that is anisotropic by nature. We propose here a new path for the derivation of the kinetic equation by using the anisotropy at the beginning of the analysis. We show that the helicity basis is not necessary to obtain the wave amplitude equation for the canonical variables that involve a combination of poloidal and toroidal fields. The multiple time scale method adapted to this anisotropic problem is then used to derive the kinetic equation that is the same as the original work when anisotropy is eventually taken into account. This result proves the commutativity between asymptotic closure and anisotropy. In addition, the multiple time scale method informs us that the kinetic equation can be derived without imposing restrictions on the probability distribution of the wave amplitude such as quasi-Gaussianity, or on the phase such as random phase approximation that naturally occurs dynamically.

Funder

Institut Universitaire de France

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3