On the contact region of a diffusion-limited evaporating drop: a local analysis

Author:

Morris S. J. S.

Abstract

AbstractMotivated by experiments showing that a sessile drop of volatile perfectly wetting liquid initially advances over the substrate, but then reverses, we formulate the problem describing the contact region at reversal. Assuming a separation of scales, so that the radial extent of this region is small compared with the instantaneous radius$a$of the apparent contact line, we show that the time scale characterizing the contact region is small compared with that on which the bulk drop is evolving. As a result, the contact region is governed by a boundary-value problem, rather than an initial-value problem: the contact region has no memory, and all its properties are determined by conditions at the instant of reversal. We conclude that the apparent contact angle$\theta $is a function of the instantaneous drop radius$a$, as found in the experiments. We then non-dimensionalize the boundary-value problem, and find that its solution depends on one parameter$\mathscr{L}$, a dimensionless surface tension. According to this formulation, the apparent contact angle is well-defined: at the outer edge of the contact region, the film slope approaches a limit that is independent of the curvature of bulk drop. In this, it differs from the dynamic contact angle observed during spreading of non-volatile drops. Next, we analyse the boundary-value problem assuming$\mathscr{L}$to be small. Though, for arbitrary$\mathscr{L}$, determining$\theta $requires solving the steady diffusion equation for the vapour, there is, for small$\mathscr{L}$, a further separation of scales within the contact region. As a result,$\theta $is now determined by solving an ordinary differential equation. We predict that$\theta $varies as${a}^{- 1/ 6} $, as found experimentally for small drops ($a\lt 1~\mathrm{mm} $). For these drops, predicted and measured angles agree to within 10–30 %. Because the discrepancy increases with$a$, but$\mathscr{L}$is a decreasing function of$a$, we infer that some process occurring outside the contact region is required to explain the observed behaviour of larger drops having$a\gt 1~\mathrm{mm} $.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3