Response of a hypersonic turbulent boundary layer to favourable pressure gradients

Author:

Tichenor N. R.,Humble R. A.,Bowersox R. D. W.

Abstract

AbstractThe role of streamline curvature-driven favourable pressure gradients in modifying the turbulence structure of a Mach 4.9, high-Reynolds-number (${\mathit{Re}}_{\theta } = 43\hspace{0.167em} 000$) boundary layer is examined. Three pressure gradient cases ($\beta = (\mathrm{d} p/ \mathrm{d} x)({\delta }^{\ast } / {\tau }_{w} )= 0. 07, - 0. 3$ and $- 1. 0$) are characterized via particle image velocimetry. The expected stabilizing trends in the Reynolds stresses are observed, with a sign reversal in the Reynolds shear stress in the outer part of the boundary layer for the strongest favourable pressure gradient considered. The increased transverse normal strain rate and reduced principal strain rate are the primary factors. Reynolds stress quadrant events are redistributed, such that the relative differences between the quadrant magnitudes decreases. Very little preferential quadrant mode selection is observed for the strongest pressure gradient considered. Two-point correlations suggest that the turbulent structures are reoriented to lean farther away from the wall, accompanied by a slight reduction in their characteristic size, consistent with previous flow visualization studies. This reorientation is more pronounced in the outer, dilatation-dominated region of the boundary layer, whereas the alteration in structure size is more pronounced nearer the wall, where the principal strain rates are larger. In addition, integration of a simplified form of a Reynolds stress transport closure model provided a framework to assess the role of the strain-rate field on the observed Reynolds shear stresses. Given the simple geometry, the present data provide a suitable test bed for Reynolds stress transport and large-eddy model development and validation.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference56 articles.

1. The effect of streamline curvature on turbulent flow;Bradshaw;AGARDograph,1973

2. Influence of a strong adverse pressure gradient on the turbulent structure in a boundary layer

3. Innovative Scientific Solutions, Inc. 2005. dPIV, 32-bit PIV Analysis Code, Software Package, Version 2.1, Innovative Scientific Solutions, Inc., Dayton, OH.

4. The departure from equilibrium of turbulent boundary layers;McDonald;Aeronaut. Q.,1968

5. Ecker T. , Lowe K. & Simpson R. Novel laser Doppler acceleration measurements of particle lag through a shock wave, AIAA Paper 2012-0694, 2012.

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3