Electrokinetic flows about conducting drops

Author:

Schnitzer Ory,Frankel Itzchak,Yariv Ehud

Abstract

AbstractWe consider electrokinetic flows about a freely suspended liquid drop, deriving a macroscale description in the thin-double-layer limit where the ratio $\delta $ between Debye width and drop size is asymptotically small. In this description, the electrokinetic transport occurring within the diffuse part of the double layer (the ‘Debye layer’) is represented by effective boundary conditions governing the pertinent fields in the electro-neutral bulk, wherein the generally non-uniform distribution of $\zeta $, the dimensionless zeta potential, is a priori unknown. We focus upon highly conducting drops. Since the tangential electric field vanishes at the drop surface, the viscous stress associated with Debye-scale shear, driven by Coulomb body forces, cannot be balanced locally by Maxwell stresses. The requirement of microscale stress continuity therefore brings about a unique velocity scaling, where the standard electrokinetic scale is amplified by a ${\delta }^{- 1} $ factor. This reflects a transition from slip-driven electro-osmotic flows to shear-induced motion. The macroscale boundary conditions display distinct features reflecting this unique scaling. The effective shear-continuity condition introduces a Lippmann-type stress jump, appearing as a product of the local charge density and electric field. This term, representing the excess Debye-layer shear, follows here from a systematic coarse-graining procedure starting from the exact microscale description, rather than from thermodynamic considerations. The Neumann condition governing the bulk electric field is inhomogeneous, representing asymptotic matching with transverse ionic fluxes emanating from the Debye layer; these fluxes, in turn, are associated with non-uniform tangential ‘surface’ currents within this layer. Their appearance at leading order is a manifestation of dominant advection associated with the large velocity scale. For weak fields, the linearized macroscale equations admit an analytic solution, yielding a closed-form expression for the electrophoretic velocity. When scaled by Smoluchowski’s speed, it reads $${\delta }^{- 1} \frac{\sinh ( \overline{\zeta } / 2)/ \overline{\zeta } }{1+ { \textstyle\frac{3}{2} }\mu + 2\alpha {\mathop{\sinh }\nolimits }^{2} ( \overline{\zeta } / 2)} ,$$ wherein $ \overline{\zeta } $, the ‘drop zeta potential’, is the uniform value of $\zeta $ in the absence of an applied field, $\mu $ the ratio of drop to electrolyte viscosities, and $\alpha $ the ionic drag coefficient. The difference from solid-particle electrophoresis is manifested in two key features: the ${\delta }^{- 1} $ scaling, and the effect of ionic advection, as represented by the appearance of $\alpha $. Remarkably, our result differs from the small-$\delta $ limit of the mobility expression predicted by the weak-field model of Ohshima, Healy & White (J. Chem. Soc. Faraday Trans. 2, vol. 80, 1984, pp. 1643–1667). This discrepancy is related to the dominance of advection on the bulk scale, even for weak fields, which feature cannot be captured by a linear theory. The order of the respective limits of thin double layers and weak applied fields is not interchangeable.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3