Affiliation:
1. Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
Abstract
Diffusiophoresis of a perfectly conducting droplet-like liquid metal in electrolyte solutions is investigated theoretically, focusing on the chemiphoresis component, the very heart of diffusiophoresis, where the droplet motion is induced solely by the chemical gradient. The resulting electrokinetic equations are solved with a pseudo-spectral method based on Chebyshev polynomials. For the isothermal electrokinetic system of a perfectly conducting droplet considered here, there is no Marangoni effect, which is a motion-inducing effect due to the variation of interfacial tension along the droplet surface. No Maxwell traction is present as well. The droplet motion is full of hydrodynamic nature. It is found, among other things, that contrary to a dielectric droplet, a conducting droplet always moves up the chemical gradient toward the region with a higher concentration of ions in chemiphoresis. This implies that a perfectly conducting droplet like a gallium or its alloy droplet is superior to the commonly utilized dielectric droplet like a liposome in drug delivery in terms of self-guarding itself toward the desired destination of injured or infected area in the human body, as specific ionic chemicals are often released there. Optimum droplet size yielding the fastest migration rate is predicted.
Funder
Ministry of Science and Technology, Taiwan
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献