Conditional statistics of the turbulent/non-turbulent interface in a jet flow

Author:

Gampert Markus,Narayanaswamy Venkat,Schaefer Philip,Peters Norbert

Abstract

AbstractUsing two-dimensional high-speed measurements of the mixture fraction $Z$ in a turbulent round jet with nozzle-based Reynolds numbers $R{e}_{0} $ between 3000 and 18 440, we investigate the scalar turbulent/non-turbulent (T/NT) interface of the flow. The mixture fraction steeply changes from $Z= 0$ to a final value which is typically larger than 0.1. Since combustion occurs in the vicinity of the stoichiometric mixture fraction, which is around $Z= 0. 06$ for typical fuel/air mixtures, it is expected to take place largely within the turbulent/non-turbulent interface. Therefore, deep understanding of this part of the flow is essential for an accurate modelling of turbulent non-premixed combustion. To this end, we use a composite model developed by Effelsberg & Peters (Combust. Flame, vol. 50, 1983, pp. 351–360) for the probability density function (p.d.f.) $P(Z)$ which takes into account the different contributions from the fully turbulent as well as the turbulent/non-turbulent interface part of the flow. A very good agreement between the measurements and the model is observed over a wide range of axial and radial locations as well as at varying intermittency factor $\gamma $ and shear. Furthermore, we observe a constant mean mixture fraction value in the fully turbulent region. The p.d.f. of this region is thus of non-marching character, which is attributed physically to the meandering nature of the fully turbulent core of the jet flow. Finally, the location and in particular the scaling of the thickness $\delta $ of the scalar turbulent/non-turbulent interface are investigated. We provide the first experimental results for the thickness of the interface over the above-mentioned Reynolds number range and observe $\delta / L\sim R{ e}_{\lambda }^{- 1} $, where $L$ is an integral length scale and $R{e}_{\lambda } $ the local Reynolds number based on the Taylor scale $\lambda $, meaning that $\delta \sim \lambda $. This result also supports the assumption often made in modelling of the stoichiometric scalar dissipation rate ${\chi }_{st} $ being a Reynolds-number-independent quantity.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3