Kelvin wake pattern at large Froude numbers

Author:

Darmon Alexandre,Benzaquen Michael,Raphaël Elie

Abstract

AbstractGravity waves generated by an object moving at constant speed at the water surface form a specific pattern commonly known as the Kelvin wake. It was proved by Lord Kelvin that such a wake is delimited by a constant angle ${\simeq }19. 4{7}^{\circ } $. However a recent study by Rabaud and Moisy based on the observation of airborne images showed that the wake angle seems to decrease as the Froude number $Fr$ increases, scaling as $F{r}^{- 1} $ for large Froude numbers. To explain such observations they make the strong hypothesis that an object of size $b$ cannot generate wavelengths larger than $b$. Without the need of such an assumption and modelling the moving object by an axisymmetric pressure field, we analytically show that the angle corresponding to the maximum amplitude of the waves scales as $F{r}^{- 1} $ for large Froude numbers, whereas the angle delimiting the wake region outside which the surface is essentially flat remains constant and equal to the Kelvin angle for all $Fr$.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference25 articles.

1. Suzuki K. , Nakata Y. , Ikehata M. & Kai H. 1997 Numerical prediction on wave making resistance of high speed trimaran. In Fourth International Conference on Fast Sea Transportation, Sydney, 21–23 July.

2. Capillary gravity waves caused by a moving disturbance: Wave resistance

3. Capillary-gravity waves on depth-dependent currents: Consequences for the wave resistance

4. Planing of a low-aspect-ratio flat ship at infinite Froude number

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3