Hydrodynamic Interactions between Ships in a Fleet

Author:

Liu Zhengyuan1ORCID,Dai Changming1,Cui Xiaohui1,Wang Yu12,Liu Hui1,Zhou Bo1

Affiliation:

1. State Key Laboratory of Structural Analysis for Industrial Equipment, School of Naval Architecture Engineering, Dalian University of Technology, Dalian 116024, China

2. COSCO Shipping Heavy Industry (Dalian) Co., Ltd., Dalian 116113, China

Abstract

There has always been a concern about the hydrodynamic interaction between ships in a flow field. In this study, the RANS method is utilized, and the hydrodynamic interference between two KRISO Container Ships (KCS) operating in still water with identical parameters and sailing at the same speed is investigated. Overlapping grids are used to simulate ship motion, and the VOF method is used to simulate the free surface. A KCS ship model of 1:1 size without propeller is used in the study. In order to study the change principle of the Kelvin flow field created by a single ship, the resistance coefficient and the flow field surrounding the ship are first calculated for the monohull case. Then the influence of interference between two ships is examined at various speeds and intervals and compared with the monohull case. It is discovered that the resistance coefficient of the following ship is reduced in a certain speed interval under the influence of the leading ship, where the maximum reduction can be up to 24.3%. The reason for this phenomenon may be that the wave around the following ship is superimposed on the transverse wave behind the leading ship. When the height of the wave is suppressed, the following ship’s resistance is reduced.

Funder

National Natural Science Foundation of China

Dalian Innovation Research Team in Key Areas

The Fundamental Research Funds for the Central Universities

The Belt and Road Special Foundation of The National Key Laboratory of Water Disaster Prevention

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3