Stationary ideal flow on a free surface of a given shape

Author:

Tophøj L.,Bohr T.

Abstract

AbstractWe study the stationary, ideal flow on a free fluid surface with a prescribed shape. It is demonstrated that the flow is governed by a self-contained set of equations for the surface flow field without any reference to the bulk flow. To write down these equations for arbitrary surfaces, we apply a covariant formulation using Riemannian geometry and we show how to include surface tension and velocity-dependent forces such as the Coriolis force. We write down explicitly the equations for cases where the surface elevation can be written as function of either Cartesian or polar coordinates in the plane, and we obtain solutions for the important case of rotational symmetry and the perturbed flow when this symmetry is slightly broken. To understand the general character and solubility of the equations, we introduce the associated dynamical system describing the motion along the streamlines. The existence of orbits with transversal intersections, as well as quasi-periodic and chaotic solutions, show that not all boundary value problems are well-posed. In the particular case of unforced motion the streamlines are geodesic curves and in this case the existence of a non-trivial surface velocity field requires that the surface can be foliated by a family of non-intersecting geodesic curves.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3