On the instabilities of a potential vortex with a free surface

Author:

Mougel J.ORCID,Fabre D.,Lacaze L.,Bohr T.

Abstract

In this paper, we address the linear stability analysis of a confined potential vortex with a free surface. This particular flow has been recently used by Tophøj et al. (Phys. Rev. Lett., vol. 110(19), 2013, article 194502) as a model for the swirling flow of fluid in an open cylindrical container, driven by rotating the bottom plate (the rotating bottom experiment) to explain the so-called rotating polygons instability (Vatistas J. Fluid Mech., vol. 217, 1990, pp. 241–248; Jansson et al., Phys. Rev. Lett., vol. 96, 2006, article 174502) in terms of surface wave interactions leading to resonance. Global linear stability results are complemented by a Wentzel–Kramers–Brillouin–Jeffreys (WKBJ) analysis in the shallow-water limit as well as new experimental observations. It is found that global stability results predict additional resonances that cannot be captured by the simple wave coupling model presented in Tophøj et al. (2013). Both the main resonances (thought to be at the root of the rotating polygons) and these secondary resonances are interpreted in terms of over-reflection phenomena by the WKBJ analysis. Finally, we provide experimental evidence for a secondary resonance supporting the numerical and theoretical analysis presented. These different methods and observations allow to support the unstable wave coupling mechanism as the physical process at the origin of the polygonal patterns observed in free-surface rotating flows.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3