Faraday instability in floating liquid lenses: the spontaneous mutual adaptation due to radiation pressure

Author:

Pucci G.,Ben Amar M.,Couder Y.

Abstract

AbstractFluid dynamics instabilities are usually investigated in two types of situations, either confined in cells with fixed boundaries, or free to grow in open space. In this article we study the Faraday instability triggered in a floating liquid lens. This is an intermediate situation in which a hydrodynamical instability develops in a domain with flexible boundaries. The instability is observed to be initially disordered with fluctuations of both the wave field and the lens boundaries. However, a slow dynamics takes place, leading to a mutual adaptation so that a steady regime is reached with a stable wave field in a stable lens contour. The most recurrent equilibrium lens shape is elongated with the Faraday wave vector along the main axis. In this self-organized situation an equilibrium is reached between the radiation pressure exerted by Faraday waves on the borders and their capillary response. The elongated shape is obtained theoretically as the exact solution of a Riccati equation with a unique control parameter and compared with the experiment.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference36 articles.

1. Interface conditions for two-phase displacement in Hele-Shaw cells

2. Les tourbillons cellulaires dans une nappe liquide transportent de la chaleur par convection en régime permanent;Bénard;Ann. Chim. Phys.,1900

3. Patterns and spatiotemporal chaos in parametrically forced surface waves: a systematic survey at large aspect ratio

4. A self-adaptative oscillator

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3