Interface coupling effect and multi-mode Faraday instabilities in a three-layer fluid system

Author:

Huang Yi-Fei,Zhuo Rong-Lin,Yang Juan-ChengORCID,Ni Ming-JiuORCID

Abstract

We investigate the Faraday instabilities of a three-layer fluid system in a cylindrical container containing low-viscosity liquid metal, sodium hydroxide solution and air by establishing the Mathieu equations with considering the viscous model derived by Labrador et al. (J. Phys.: Conf. Ser., vol. 2090, 2021, 012088). The Floquet analysis, asymptotic analysis, direct numerical simulation and experimental method are adopted in the present study. We obtain the dispersion relations and critical oscillation amplitudes of zigzag and varicose modes from the analysis of the Mathieu equations, which agree well with the experimental result. Furthermore, considering the coupling strength of two interfaces, besides zigzag and varicose modes, we find a beating instability mode that contains two primary frequencies, with its average frequency equalling half of the external excitation frequency in the strongly coupled system. In the weakly coupled system, the $A$ -interface instability, $B$ -interface instability and $A$ & $B$ -interface instability are defined. Finally, we obtain a critical wavenumber $k_c$ that can determine the transition from zigzag or varicose modes to the corresponding $A$ -interface or $B$ -interface instability.

Funder

Ministry of Science and Technology of the People's Republic of China

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Reference42 articles.

1. Audible sound-controlled spatiotemporal patterns in out-of-equilibrium systems;Hwang;Nat. Chem.,2020

2. Secondary Faraday waves in microgravity;Labrador;J. Phys.: Conf. Ser.,2021

3. The Faraday threshold in small cylinders and the sidewall non-ideality;Batson;J. Fluid Mech.,2013

4. Effect of magnetic field on parametrically driven surface waves;Paul;Proc. R. Soc. Lond. A,2007

5. Faraday instability in double-interface fluid layers;Ward;Phys. Rev. Fluids,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3