Abstract
AbstractThe role of neutral solute advection on the diffusiophoretic motion of colloidal particles is quantified. Theoretical analyses of this phenomenon usually assume that the solute concentration evolves solely via diffusion; that is, the Péclet number ($\mathit{Pe}$) for solute transport is identically zero. This leads to the conclusion that the translational diffusiophoretic velocity of a colloid is independent of its size, shape, and orientation with respect to the imposed solute gradient, provided that the colloid has uniform surface properties and that the length scale of interaction between the solute and the particle surface is much smaller than the particle size (Morrison, J. Colloid Interface Sci. vol. 34, 1970, p. 210). For a single spherical colloid, we show that the particle velocity decreases monotonically with increasing $\mathit{Pe}$. Moreover, the solute concentration and fluid flow around the colloid become markedly fore–aft asymmetric as $\mathit{Pe}$ is increased. Next, an asymptotic expansion at small $\mathit{Pe}$ predicts that solute advection leads to relative phoretic motion between two identical spherical colloids, which ultimately align in a plane normal to the imposed gradient (there is no relative motion at $\mathit{Pe}= 0$). Finally, asymptotic analysis of the diffusiophoretic motion of a slightly non-spherical colloid at small $\mathit{Pe}$ demonstrates that advection leads to a shape- and orientation-dependent particle velocity, in contrast to the insensitivity of the velocity to shape and orientation at $\mathit{Pe}= 0$.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献