Diffusiophoresis of colloidal particles in neutral solute gradients at finite Péclet number

Author:

Khair Aditya S.

Abstract

AbstractThe role of neutral solute advection on the diffusiophoretic motion of colloidal particles is quantified. Theoretical analyses of this phenomenon usually assume that the solute concentration evolves solely via diffusion; that is, the Péclet number ($\mathit{Pe}$) for solute transport is identically zero. This leads to the conclusion that the translational diffusiophoretic velocity of a colloid is independent of its size, shape, and orientation with respect to the imposed solute gradient, provided that the colloid has uniform surface properties and that the length scale of interaction between the solute and the particle surface is much smaller than the particle size (Morrison, J. Colloid Interface Sci. vol. 34, 1970, p. 210). For a single spherical colloid, we show that the particle velocity decreases monotonically with increasing $\mathit{Pe}$. Moreover, the solute concentration and fluid flow around the colloid become markedly fore–aft asymmetric as $\mathit{Pe}$ is increased. Next, an asymptotic expansion at small $\mathit{Pe}$ predicts that solute advection leads to relative phoretic motion between two identical spherical colloids, which ultimately align in a plane normal to the imposed gradient (there is no relative motion at $\mathit{Pe}= 0$). Finally, asymptotic analysis of the diffusiophoretic motion of a slightly non-spherical colloid at small $\mathit{Pe}$ demonstrates that advection leads to a shape- and orientation-dependent particle velocity, in contrast to the insensitivity of the velocity to shape and orientation at $\mathit{Pe}= 0$.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference47 articles.

1. Slow migration of a gas bubble in a thermal gradient

2. Sur l’électrophorèse d’un ensemble de particules portant la même densiteé uniform de charges;Sellier;C. R. Acad. Sci. Paris.,1999

3. Optimal feeding is optimal swimming for all Péclet numbers

4. The Stokes resistance of an arbitrary particle—IV Arbitrary fields of flow

5. Particle Motions in a Viscous Fluid

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3