Characterisation of fully developed and equilibrium states of non-electrolyte diffusiophoretic systems via numerical simulations

Author:

da Cunha SergioORCID,Shcherbakova Nataliya,Gerbaud Vincent,Bacchin Patrice

Abstract

Diffusiophoresis takes place when a particle in solution moves due to the presence of a solute concentration gradient. This phenomenon is often studied under some simplifying assumptions, such as negligible diffusive layer thickness or infinite diffusion coefficient. In this work we simulate diffusiophoresis without these simplifications. The goal of this numerical study is to investigate equilibrium and fully developed states of non-electrolyte phoretic systems. Simulation results show that equilibrium states depend on solute diffusivity and on a reference solute concentration far from the particle. An expression is regressed that gives the (equilibrium) diffusiophoretic velocity as a function of solute concentration gradient, solute diffusion coefficient and the reference solute concentration far from the particle. A different set of results reveals that the state of phoretic systems does not depend on the initial conditions when time goes to infinity. This motivates the definition of fully developed states, designating those systems whose properties no longer depend on initial conditions. Apart from these findings, this work also depicts the effect of solute–interface interactions on diffusiophoresis. Simulation results for two solid particles with different interaction potentials are used to illustrate particle separation via diffusiophoresis. Finally, values of particle mobility are calculated for different solute–interface attraction strengths. These results are compared with another work in the literature, which studies polymer diffusiophoresis via molecular simulations (Ramírez-Hinestrosa et al., J. Chem. Phys., vol. 152, 2020, p. 164901).

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3