Deformation and breakup of a leaky dielectric drop in a quadrupole electric field

Author:

Deshmukh Shivraj D.,Thaokar Rochish M.

Abstract

AbstractThe deformation and breakup of a leaky dielectric drop suspended in a leaky dielectric medium subjected to a quadrupole electric field are studied. Analytical (linear and nonlinear asymptotic expansions in the electric capillary number, $C{a}_{Q} $, a ratio of electric to capillary stress) and numerical (boundary element) methods are used. A complete phase diagram for the drop deformation in the $R$$Q$ plane is presented, where $R$ and $Q$ are the non-dimensional ratios of the resistivities and dielectric constants, respectively, of the drop and the medium phase. The prolate and oblate deformations are mapped in the phase diagram, and the flow contours are also shown. The large deformation and breakup of a drop at higher $C{a}_{Q} $ are analysed using the boundary element method. Several non-trivial shapes are observed at the onset of breakup of a drop. A prolate drop always breaks above a certain critical value of $C{a}_{Q} $. In the oblate deformation cases, breakup as well as steady shapes are observed at a higher value of $C{a}_{Q} $. A detailed study of prolate and oblate deformation tendencies due to the normal and tangential electric stresses and the countervailing role of viscous stresses is presented. The circulation inside a drop is found to be more intense for a quadrupole field as compared with a uniform electric field. More intense internal circulations can lead to enhanced mixing characteristics and will have implications in microfluidic devices.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3