Rain-induced attenuation of deep-water waves

Author:

Peirson William L.,Beyá José F.,Banner Michael L.,Peral Joaquín Sebastián,Azarmsa Seyed Ali

Abstract

AbstractA laboratory investigation has been undertaken to quantify water wave attenuation rates as a function of rainfall rate. Vertical artificial rainfall is shown to generate weak near-surface velocity fluctuations that decline systematically away from the free surface and are independent of rainfall rate across the range of rainfall rates investigated (40–$170~\mathrm{mm} ~{\mathrm{h} }^{- 1} $). In the absence of rain, the observed attenuation of gravity waves is at levels consistent with classical viscous theory, but with a systematic finite-amplitude effect observed above a mean steepness of 0.10. Wave attenuation rates were found to be independent of the mean wave steepness and identical when artificial rainfall rates of 108 and$141~\mathrm{mm} ~{\mathrm{h} }^{- 1} $were applied. Reassessment of complementary theoretical and experimental studies of individual droplets impacting on undisturbed water surfaces indicates that above a weak threshold rainfall rate of$30~\mathrm{mm} ~{\mathrm{h} }^{- 1} $, the surface irradiation becomes so frequent that droplet-generated violent surface motions directly interact with the incoming droplets. Present evidence is that a matching of time scales develops between the incoming surface irradiation and surface water motions generated by antecedent droplets as the rainfall rate increases. Consequently, at high rainfall rates, a highly dissipative surface regime is created that transmits little of the incident rainfall kinetic energy to the aqueous layers below. Rainfall-induced wave attenuation rates are compared with measurements of other wave attenuation processes to obtain a hierarchy of strength in both the laboratory and the field. Comparison is also made with wave attenuation theories that incorporate momentum and energy flux considerations. Rain-induced wave attenuation rates are weak or very strong depending on whether they are expressed in terms of energy scaling obtained from above or below the surface respectively, due to the high dissipation rate that occurs in the vicinity of the interface.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference70 articles.

1. Strong Turbulence in the Wave Crest Region

2. Some effects of the air-water interface on gravity waves

3. Splash formation by spherical drops;Liow;J. Fluid Mech.,2001

4. Wave breaking onset and strength for two-dimensional deep-water wave groups

5. Tolman H. 2009 User manual and system documentation of WAVEWATCH III TM version 3.14. Tech. Note. MMAB Contribution 276. NOAA.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3