Efficient description logic reasoning in Prolog: The DLog system

Author:

LUKÁCSY GERGELY,SZEREDI PÉTER

Abstract

AbstractTraditional algorithms for description logic (DL) instance retrieval are inefficient for large amounts of underlying data. As DL is becoming more and more popular in areas such as the Semantic Web and information integration, it is very important to have systems which can reason efficiently over large data sets. In this paper we present an approach to transform DL axioms, formalised in the$\mathcal{SHIQ}$DL language, into a Prolog program under the unique name assumption. This transformation is performed with no knowledge about particular individuals: they are accessed dynamically during the normal Prolog execution of the generated program. This technique, together with the top-down Prolog execution, implies that only those pieces of data are accessed that are indeed important for answering the query. This makes it possible to store the individuals in a database instead of memory, which results in better scalability and helps in using DL ontologies directly on top of existing information sources. The transformation process consists of two steps: (1) the DL axioms are converted to first-order clauses of a restricted form, and (2) a Prolog program is generated from these clauses. Step (2), which is the focus of the present paper, actually works on more general clauses than those obtainable by applying step (1) to a$\mathcal{SHIQ}$knowledge base. We first present a base transformation, the output of which can be either executed using a simple interpreter or further extended to executable Prolog code. We then discuss several optimisation techniques, applicable to the output of the base transformation. Some of these techniques are specific to our approach, while others are general enough to be interesting for DL reasoner implementors not using Prolog. We give an overview ofDLog, a DL reasoner in Prolog, which is an implementation of the techniques outlined above. We evaluate the performance of DLog and compare it to some widely used DL reasoners, such as RacerPro, Pellet and KAON2.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Computational Theory and Mathematics,Hardware and Architecture,Theoretical Computer Science,Software

Reference44 articles.

1. Warren D. S. 1999. Programming in tabled Prolog (draft) [online]. Accessed 23 May 2009. URL: http://www.cs.sunysb.edu/~warren/xsbbook/book.html

2. A Prolog technology theorem prover: a new exposition and implementation in Prolog

3. OILing the way to machine understandable bioinformatics resources

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3