Estimating the overlap between dependent computations for automatic parallelization

Author:

BONE PAUL,SOMOGYI ZOLTAN,SCHACHTE PETER

Abstract

AbstractResearchers working on the automatic parallelization of programs have long known that too much parallelism can be even worse for performance than too little, because spawning a task to be run on another CPU incurs overheads. Autoparallelizing compilers have therefore long tried to use granularity analysis to ensure that they only spawn off computations whose cost will probably exceed the spawn-off cost by a comfortable margin. However, this is not enough to yield good results, because data dependencies may also limit the usefulness of running computations in parallel. If one computation blocks almost immediately and can resume only after another has completed its work, then the cost of parallelization again exceeds the benefit. We present a set of algorithms for recognizing places in a program where it is worthwhile to execute two or more computations in parallel that pay attention to the second of these issues as well as the first. Our system uses profiling information to compute the times at which a procedure call consumes the values of its input arguments and the times at which it produces the values of its output arguments. Given two calls that may be executed in parallel, our system uses the times of production and consumption of the variables they share to determine how much their executions would overlap if they were run in parallel, and therefore whether executing them in parallel is a good idea or not. We have implemented this technique for Mercury in the form of a tool that uses profiling data to generate recommendations about what to parallelize, for the Mercury compiler to apply on the next compilation of the program. We present preliminary results that show that this technique can yield useful parallelization speedups, while requiring nothing more from the programmer than representative input data for the profiling run.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Computational Theory and Mathematics,Hardware and Architecture,Theoretical Computer Science,Software

Reference14 articles.

1. The execution algorithm of mercury, an efficient purely declarative logic programming language

2. Tannier J. 2007. Parallel Mercury. M.S. thesis, Institut d'informatique, Facultés Universitaires Notre-Dame de la Paix, 21, rue Grandgagnage, B-5000 Namur, Belgium.

3. Feedback directed implicit parallelism

4. Distance: A new metric for controlling granularity for parallel execution;Shen;Journal of Functional and Logic Programming,1999

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3