Feedback directed implicit parallelism

Author:

Harris Tim1,Singh Satnam1

Affiliation:

1. Microsoft Research, Cambridge, United Kingdom

Abstract

In this paper we present an automated way of using spare CPU resources within a shared memory multi-processor or multi-core machine. Our approach is ( i ) to profile the execution of a program, ( ii ) from this to identify pieces of work which are promising sources of parallelism, ( iii ) recompile the program with this work being performed speculatively via a work-stealing system and then ( iv ) to detect at run-time any attempt to perform operations that would reveal the presence of speculation. We assess the practicality of the approach through an implementation based on GHC 6.6 along with a limit study based on the execution profiles we gathered. We support the full Concurrent Haskell language compiled with traditional optimizations and including I/O operations and synchronization as well as pure computation. We use 20 of the larger programs from the 'nofib' benchmark suite. The limit study shows that programs vary a lot in the parallelism we can identify: some have none, 16 have a potential 2x speed-up, 4 have 32x. In practice, on a 4-core processor, we get 10-80% speed-ups on 7 programs. This is mainly achieved at the addition of a second core rather than beyond this. This approach is therefore not a replacement for manual parallelization, but rather a way of squeezing extra performance out of the threads of an already-parallel program or out of a program that has not yet been parallelized.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Weaving Parallel Threads;Search-Based Software Engineering;2015

2. Estimating the overlap between dependent computations for automatic parallelization;Theory and Practice of Logic Programming;2011-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3