Automated control and optimization of laser-driven ion acceleration

Author:

Loughran B.ORCID,Streeter M. J. V.ORCID,Ahmed H.ORCID,Astbury S.ORCID,Balcazar M.,Borghesi M.,Bourgeois N.,Curry C. B.,Dann S. J. D.,DiIorio S.,Dover N. P.,Dzelzainis T.,Ettlinger O. C.,Gauthier M.,Giuffrida L.,Glenn G. D.ORCID,Glenzer S. H.,Green J. S.,Gray R. J.ORCID,Hicks G. S.,Hyland C.,Istokskaia V.,King M.,Margarone D.ORCID,McCusker O.,McKenna P.ORCID,Najmudin Z.,Parisuaña C.,Parsons P.,Spindloe C.,Symes D. R.,Thomas A. G. R.,Treffert F.,Xu N.,Palmer C. A. J.ORCID

Abstract

Abstract The interaction of relativistically intense lasers with opaque targets represents a highly non-linear, multi-dimensional parameter space. This limits the utility of sequential 1D scanning of experimental parameters for the optimization of secondary radiation, although to-date this has been the accepted methodology due to low data acquisition rates. High repetition-rate (HRR) lasers augmented by machine learning present a valuable opportunity for efficient source optimization. Here, an automated, HRR-compatible system produced high-fidelity parameter scans, revealing the influence of laser intensity on target pre-heating and proton generation. A closed-loop Bayesian optimization of maximum proton energy, through control of the laser wavefront and target position, produced proton beams with equivalent maximum energy to manually optimized laser pulses but using only 60% of the laser energy. This demonstration of automated optimization of laser-driven proton beams is a crucial step towards deeper physical insight and the construction of future radiation sources.

Funder

Science and Technology Facilities Council

Engineering and Physical Sciences Research Council

National Science Foundation

Royal Society

U.S. Department of Energy

Publisher

Cambridge University Press (CUP)

Subject

Nuclear Energy and Engineering,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3