Bayesian optimization algorithms for accelerator physics

Author:

Roussel Ryan1ORCID,Edelen Auralee L.1,Boltz Tobias1ORCID,Kennedy Dylan1,Zhang Zhe1ORCID,Ji Fuhao1ORCID,Huang Xiaobiao1ORCID,Ratner Daniel1ORCID,Garcia Andrea Santamaria2ORCID,Xu Chenran2ORCID,Kaiser Jan3ORCID,Pousa Angel Ferran3ORCID,Eichler Annika34ORCID,Lübsen Jannis O.4,Isenberg Natalie M.5ORCID,Gao Yuan5ORCID,Kuklev Nikita6,Martinez Jose6,Mustapha Brahim6,Kain Verena7ORCID,Mayes Christopher8,Lin Weijian9ORCID,Liuzzo Simone Maria10ORCID,St. John Jason11ORCID,Streeter Matthew J. V.12ORCID,Lehe Remi13ORCID,Neiswanger Willie14

Affiliation:

1. SLAC National Laboratory

2. Karlsruhe Institute of Technology

3. Deutsches Elektronen-Synchrotron DESY

4. Hamburg University of Technology

5. Brookhaven National Laboratory

6. Argonne National Laboratory

7. European Organization for Nuclear Research

8. xLight

9. Cornell University

10. European Synchrotron Radiation Facility

11. Fermi National Accelerator Laboratory

12. Queen’s University Belfast

13. Lawrence Berkeley National Laboratory

14. Stanford University

Abstract

Accelerator physics relies on numerical algorithms to solve optimization problems in online accelerator control and tasks such as experimental design and model calibration in simulations. The effectiveness of optimization algorithms in discovering ideal solutions for complex challenges with limited resources often determines the problem complexity these methods can address. The accelerator physics community has recognized the advantages of Bayesian optimization algorithms, which leverage statistical surrogate models of objective functions to effectively address complex optimization challenges, especially in the presence of noise during accelerator operation and in resource-intensive physics simulations. In this review article, we offer a conceptual overview of applying Bayesian optimization techniques toward solving optimization problems in accelerator physics. We begin by providing a straightforward explanation of the essential components that make up Bayesian optimization techniques. We then give an overview of current and previous work applying and modifying these techniques to solve accelerator physics challenges. Finally, we explore practical implementation strategies for Bayesian optimization algorithms to maximize their performance, enabling users to effectively address complex optimization challenges in real-time beam control and accelerator design. Published by the American Physical Society 2024

Funder

U.S. Department of Energy

Office of Science

Basic Energy Sciences

Nuclear Physics

National Science Foundation

International Visegrad Fund

Helmholtz Association

Deutsches Elektronen-Synchrotron

Karlsruhe Institute of Technology

Royal Society

Fermi Research Alliance

Brookhaven Science Associates

Publisher

American Physical Society (APS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3