Benzobicyclon as a Post-Flood Option for Weedy Rice Control

Author:

Young Mason L.,Norsworthy Jason K.,Scott Robert C.,Bond Jason A.,Heiser James

Abstract

AbstractBenzobicyclon will be the first 4-hydroxyphenylpyruvate dioxygenase (HPPD)–inhibiting herbicide available in US rice production pending registration completion. An observation of benzobicyclon controlling weedy rice in two field trials prompted a greenhouse and field evaluation to determine if benzobicyclon would control weedy rice accessions from Arkansas, Mississippi, and southeastern Missouri. A total of 100 accessions were screened in the greenhouse and field. Percentage mortality was determined in the greenhouse, and percentage control was recorded in the field. Benzobicyclon at 371 g ai ha–1 caused at least 80% mortality of 22 accessions in the greenhouse and at least 80% control of 30 accessions in the field. For most accessions, individual plants within the accession varied in response to benzobicyclon. Based on these results, the sensitivity of weedy rice to benzobicyclon varies across accessions collected in the midsouthern United States, and it may provide an additional control option for weedy rice in some fields.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference25 articles.

1. Sandoski, CA , Brazzle, JR , Holmes, KA , Takahashi, A (2014) Benzobicyclon: a novel herbicide for U.S. rice production. Page 99 in Proceedings of the 35th Rice Technical Working Group. New Orleans, LA: Louisiana State University Agricultural Center

2. Norsworthy, JK , Sandoski, CA , Scott, RC (2014) A review of benzobicyclon trials in Arkansas rice. Page 99 in Proceedings of the 35th Rice Technical Working Group. New Orleans, LA: Louisiana State University Agricultural Center

3. Weed Management Practices and Needs in Arkansas and Mississippi Rice

4. McKnight, BM , Webster, EP , Fish, JC , Bergeron, EA , Sandoski, CA (2014) Potential for benzobicyclon under common Louisiana cropping systems. Pages 100–101 in Proceedings of the 35th Rice Technical Working Group. New Orleans, LA: Louisiana State University Agricultural Center

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3