Benzobicyclon efficacy is affected by plant growth stage, HPPD Inhibitor Sensitive 1 (HIS1) expression and zygosity in weedy rice (Oryza sativa)

Author:

Brabham ChadORCID,Norsworthy Jason K.ORCID,Sha XueyanORCID,Varanasi Vijay K.ORCID,González-Torralva FidelORCID

Abstract

AbstractBenzobicyclon tolerance in rice (Oryza sativa L.) is dependent on the presence of a functional HIS1 gene, but the level of sensitivity might vary among different cultivars. Greenhouse, laboratory, and field experiments were conducted to further explore the role of HIS1 in cultivated rice tolerance and to exploit findings toward optimizing benzobicyclon activity on weedy rice (unwanted rice; Oryza sativa L.). In a heredity experiment, benzobicyclon tolerance was confirmed to be a semidominant trait conferred by HIS1 based on the intermediate response (ED50 values) of HIS1 heterozygous F1 plants. The spatial–temporal expression of HIS1 was next studied in tissue types (blades, sheaths, and whorls) across tolerant cultivars (‘Roy J’, ‘Diamond’, ‘LaKast’, ‘CLXL745’, and ‘XL753’) and growth stages (2- to 3- compared with 5- to 6-leaf). The relative expression of HIS1 was tissue specific and highest in whorls, followed by blades and then sheaths. Minimal differences in expression across cultivars and growth stages were observed. Furthermore, HIS1 was not largely upregulated at 6 h after benzobicyclon treatment. In the same experiment, cultivar tolerance to benzobicyclon at the label rate of 371 g ha−1 was found to be growth stage dependent. Plant growth was reduced by ∼35% when rice plants were at the 2- to 3- compared with 5- to 6-leaf growth stages. These results show that differences in benzobicyclon tolerance among HIS1 homozygous cultivars is likely not directly correlated with the expression of HIS1. In this research a model was proposed and supported by a field proof of concept study, indicating benzobicyclon efficacy on weedy rice is a function of HIS1 zygosity by growth stage at application. Prior research indicates HIS1 is the dominant allele in weedy rice accessions in Arkansas, and thus, based on our model, benzobicyclon should be applied to weedy rice with ≤2 leaves for suppression.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3