Functional ecology of the biological soil crust in semiarid SE Spain: sun and shade populations of Diploschistes diacapsis (Ach.) Lumbsch.

Author:

PINTADO Ana,SANCHO Leopoldo G.,GREEN T. G. Allan,BLANQUER José Manuel,LÁZARO Roberto

Abstract

The Tabernas badlands in semiarid south-east Spain is one of the driest regions in Europe with a mean annual precipitation of c. 240 mm. The landscape is deeply dissected, with canyons, ramblas and sparsely vegetated eroded badland slopes. The vegetation is predominantly a biological soil crust consisting of different types of lichen-rich communities, one of the more conspicuous being dominated by Diploschistes diacapsis (Ach.) Lumbsch. This lichen is mainly restricted to the north- facing slopes, where it forms extensive whitish carpets and probably plays an important role in preventing erosion of the slopes and allowing plant colonization. South-facing slopes are much more eroded and generally lack vegetation. %The photosynthetic performance of north (shade) and south-facing (sun) populations of D. diacapsis was studied to determine if these different populations showed any adaptations to the microclimatic conditions of their individual habitats. The response of CO2 exchange to light intensity, temperature and water content was measured under controlled conditions in the laboratory. Dry weight-based net photosynthetic rates were higher in the southern-exposed population but quantum efficiency, and light compensation points were similar. Thallus weight per unit area (LMA) was considerably higher for shade specimens but maximum water content and optimal water content were very similar and chlorophyll content on a dry weight basis was also similar. Chlorophyll content on an area basis was higher in the northern-exposed population and always much larger than those reported in other studies on the same species (up to 8 times larger) with the result that NP values on a chlorophyll basis were relatively low. The larger LMA meant that shade thalli stored more water per unit area which should ensure longer active periods than sun thalli. The results support a strategy pair of high NP and short active time versus low NP and long active time, both having been reported for other soil crust species. However, the visibly larger biomass of the shade D. diacapsis suggests that the lichen is at the limit of its adaptability in these habitats.

Publisher

Cambridge University Press (CUP)

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3