Moss crusts mitigate the negative impacts of shrub mortality on the nutrient multifunctionality of desert soils

Author:

Zhang Qing12ORCID,Yin Benfeng1,Zhang Shujun13,Li Yonggang1,Zang Yongxin1,Rong Xiaoying1,Zhou Xiaobing1,Tao Ye1,Zhang Yuanming1

Affiliation:

1. State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography Chinese Academy of Sciences Urumqi China

2. College of Ecology and Environment Xinjiang University Urumqi China

3. University of Chinese Academy of Sciences Beijing China

Abstract

AbstractThe distribution of biological soil crusts (BSCs) and shrubs in temperate deserts often forms a common landscape surface feature. As climate change continues, desert shrubs experience varying rates of mortality, which can have severe negative impacts on soil structure and function. However, it remains uncertain whether moss crusts, prevalent beneath shrub canopies, can mitigate the effects of shrub mortality on soil nutrient environments. Therefore, this study focuses on the Gurbantunggut Desert, a typical temperate desert in northern China, with a primary focus on the dominant shrubs, Ephedra przewalskii, and the advanced stage of moss crust development within BSCs. We collected soil samples from bare sand and moss crusts under living shrubs and dead shrubs and analyzed them for their carbon, nitrogen, phosphorus, and potassium contents. Additionally, we calculated soil nutrient multifunctionality, which measures a soil's ability to sustain multiple ecosystem services simultaneously, to provide a comprehensive assessment of the effects of shrub mortality on soil nutrient function. Our results indicate that shrub mortality led to reductions in soil moisture, pH, electrical conductivity, and levels of carbon, nitrogen, phosphorus, and potassium in exposed sand compared to the sand under living shrubs. However, the presence of moss crusts significantly alleviated the adverse effects of shrub mortality on soil carbon, nitrogen, phosphorus, and potassium levels. The nutrient multifunctionality index of the moss crust only decreased by 4%, while bare sand experienced a 67% reduction following shrub mortality. Standard error of the mean analysis results revealed that when shrubs and crusts coexisted, the impact of shrubs on soil nutrient multifunctionality was much stronger than that of the moss crust. Specifically, total nutrient content was the most influential factor driving changes in soil nutrient multifunctionality. In conclusion, in desert ecosystems with declining shrubs, moss crusts can mitigate the reduction in soil nutrient contents caused by shrub degradation, thereby maintaining soil stability and nutrient multifunctionality as a viable substitute.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Natural Science Foundation of Xinjiang Uygur Autonomous Region

Publisher

Wiley

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3