Dynamics of gravity–capillary solitary waves in deep water

Author:

Wang Zhan,Milewski Paul A.

Abstract

AbstractThe dynamics of solitary gravity–capillary water waves propagating on the surface of a three-dimensional fluid domain is studied numerically. In order to accurately compute complex time-dependent solutions, we simplify the full potential flow problem by using surface variables and taking a particular cubic truncation possessing a Hamiltonian with desirable properties. This approximation agrees remarkably well with the full equations for the bifurcation curves, wave profiles and the dynamics of solitary waves for a two-dimensional fluid domain, and with higher-order truncations in three dimensions. Fully localized solitary waves are then computed in the three-dimensional problem and the stability and interaction of both line and localized solitary waves are investigated via numerical time integration of the equations. There are many solitary wave branches, indexed by their finite energy as their amplitude tends to zero. The dynamics of the solitary waves is complex, involving nonlinear focusing of wavepackets, quasi-elastic collisions, and the generation of propagating, spatially localized, time-periodic structures akin to breathers.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3