Dynamics of steep two-dimensional gravity–capillary solitary waves

Author:

MILEWSKI PAUL A.,VANDEN-BROECK J.-M.,WANG ZHAN

Abstract

In this paper, the unsteady evolution of two-dimensional fully nonlinear free-surface gravity–capillary solitary waves is computed numerically in infinite depth. Gravity–capillary wavepacket-type solitary waves were found previously for the full Euler equations, bifurcating from the minimum of the linear dispersion relation. Small and moderate amplitude elevation solitary waves, which were known to be linearly unstable, are shown to evolve into stable depression solitary waves, together with a radiated wave field. Depression waves and certain large amplitude elevation waves were found to be robust to numerical perturbations. Two kinds of collisions are computed: head-on collisions whereby the waves are almost unchanged, and overtaking collisions which are either almost elastic if the wave amplitudes are both large or destroy the smaller wave in the case of a small amplitude wave overtaking a large one.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3