Author:
MILEWSKI PAUL A.,VANDEN-BROECK J.-M.,WANG ZHAN
Abstract
In this paper, the unsteady evolution of two-dimensional fully nonlinear free-surface gravity–capillary solitary waves is computed numerically in infinite depth. Gravity–capillary wavepacket-type solitary waves were found previously for the full Euler equations, bifurcating from the minimum of the linear dispersion relation. Small and moderate amplitude elevation solitary waves, which were known to be linearly unstable, are shown to evolve into stable depression solitary waves, together with a radiated wave field. Depression waves and certain large amplitude elevation waves were found to be robust to numerical perturbations. Two kinds of collisions are computed: head-on collisions whereby the waves are almost unchanged, and overtaking collisions which are either almost elastic if the wave amplitudes are both large or destroy the smaller wave in the case of a small amplitude wave overtaking a large one.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献