Author:
Zhang L. V.,Toole J.,Fezzaa K.,Deegan R. D.
Abstract
AbstractWe report high-speed optical and X-ray observations of jets formed during the impact of a drop with a deep pool of the same liquid. We show that a scaling that relies entirely on liquid properties, as is conventionally employed, is insufficient to determine the threshold for splashing. In order to determine if the gas properties could account for this deficit, we conducted experiments with different surrounding gases. We find that the splashing threshold depends on the gas’s dynamic viscosity, but not its density. We argue that these results are consistent with a thickening of the ejecta caused by the bubble trapped on impact between the drop and the pool. We also show that drop impact can generate a third jet, distinct from the lamella and the ejecta, that produces secondary droplets of an intermediate size.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献