Dancing ejecta

Author:

Tian Yuan SiORCID,Aljedaani Abdulrahman B.,Alghamdi TariqORCID,Thoroddsen Sigurður T.ORCID

Abstract

Splashing of impacting drops produces a myriad of secondary spray droplets, which generate aerosols during rain on the ocean and can cause health hazards during the spraying of pesticides or enhance the droplet transmission of disease. Determining the size and number of the finest splashed droplets is therefore of practical interest. Herein, we use a novel experimental facility with a 26 m tall vacuum tube, to study well-controlled drop impacts at velocities as high as 22 m s $^{-1}$ , where we reach parameter regimes not studied before using freely falling drops. Using extreme video frame rates, we pinpoint the primary source of the finest spray, coming from the catastrophic bending and rupture of the sub-micron-thick ejecta sheet, which emerges at a high speed from the neck connecting the drop and pool. The axisymmetric bending and convoluted ejecta shapes are driven primarily by resistance from the surrounding air, but also depend on the viscosity difference between drop and pool, which influences the initial ejection angle of the sheet. These extreme impact conditions provide new insights into general spray formation, through a sequence of bucklings of the rising ejecta, which dances next to the drop surface and can also form an enclosed air torus.

Funder

King Abdullah University of Science and Technology

Publisher

Cambridge University Press (CUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3