Minimal seeds for shear flow turbulence: using nonlinear transient growth to touch the edge of chaos

Author:

Pringle Chris C. T.,Willis Ashley P.,Kerswell Rich R.

Abstract

AbstractWe propose a general strategy for determining the minimal finite amplitude disturbance that triggers transition to turbulence in shear flows. This involves constructing a variational problem that searches over all disturbances of fixed initial amplitude which respect the boundary conditions, incompressibility and the Navier–Stokes equations, to maximize a chosen functional over an asymptotically long time period. The functional must be selected such that it identifies turbulent velocity fields by taking significantly enhanced values compared to those for laminar fields. We illustrate this approach using the ratio of the final to initial perturbation kinetic energies (energy growth) as the functional and the energy norm to measure amplitudes in the context of pipe flow. Our results indicate that the variational problem yields a smooth converged solution provided that the initial amplitude is below the threshold for transition. This optimal is the nonlinear analogue of the well-studied (linear) transient growth optimal. At the critical threshold, the optimization seeks out a disturbance that is on the ‘edge’ of turbulence during the period. Above this threshold, when disturbances trigger turbulence by the end of the period, convergence is then practically impossible. The first disturbance found to trigger turbulence as the amplitude is increased identifies the ‘minimal seed’ for the given geometry and forcing (Reynolds number). We conjecture that it may be possible to select a functional such that the converged optimal below threshold smoothly converges to the minimal seed at threshold. Our choice of the energy growth functional is shown to come close to this for the pipe flow geometry investigated here.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3