Beyond optimal disturbances: a statistical framework for transient growth

Author:

Frame PeterORCID,Towne AaronORCID

Abstract

The theory of transient growth describes how linear mechanisms can cause temporary amplification of disturbances even when the linearized system is asymptotically stable as defined by its eigenvalues. This growth is traditionally quantified by finding the initial disturbance that generates the maximum response at the peak time of its evolution. However, this can vastly overstate the growth of a real disturbance. In this paper, we introduce a statistical perspective on transient growth that models statistics of the energy amplification of the disturbances. We derive a formula for the mean energy amplification and spatial correlation of the growing disturbance in terms of the spatial correlation of the initial disturbance. The eigendecomposition of the correlation provides the most prevalent structures, which are the statistical analogue of the standard left singular vectors of the evolution operator. We also derive accurate confidence bounds on the growth by approximating the probability density function of the energy. Applying our analysis to Poiseuille flow yields a number of observations. First, the mean energy amplification is often drastically smaller than the maximum. In these cases, it is exceedingly unlikely to achieve near-optimal growth due to the exponential behaviour observed in the probability density function. Second, the characteristic length scale of the initial disturbances has a significant impact on the expected growth, with large-scale initial disturbances growing orders of magnitude more than small-scale ones. Finally, while the optimal growth scales quadratically with Reynolds number, the mean energy amplification scales only linearly for certain reasonable choices of the initial correlation.

Publisher

Cambridge University Press (CUP)

Reference50 articles.

1. On the structure and origin of pressure fluctuations in wall turbulence: predictions based on the resolvent analysis;Luhar;J. Fluid Mech.,2014

2. Distribution of the ratio of the mean square successive difference to the variance;von Neumann;Ann. Math. Statist.,1941

3. Minimal seeds for shear flow turbulence: using nonlinear transient growth to touch the edge of chaos;Pringle;J. Fluid Mech.,2012

4. Model reduction for flow analysis and control;Rowley;Annu. Rev. Fluid Mech.,2017

5. Turbulence and the dynamics of coherent structures. I – coherent structures. II – symmetries and transformations. III – dynamics and scaling;Sirovich;Q. Appl. Maths,1987

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3