Author:
Mizerski K. A.,Bajer K.,Moffatt H. K.
Abstract
AbstractThe mean electromotive force (EMF) associated with exponentially growing perturbations of an Euler flow with elliptic streamlines in a rotating frame of reference is studied. We are motivated by the possibility of dynamo action triggered by tidal deformation of astrophysical objects such as accretion discs, stars or planets. Ellipticity of the flow models such tidal deformations in the simplest way. Using analytical techniques developed by Lebovitz & Zweibel (Astrophys. J., vol. 609, 2004, pp. 301–312) in the limit of small elliptic (tidal) deformations, we find the EMF associated with each resonant instability described by Mizerski & Bajer (J. Fluid Mech., vol. 632, 2009, pp. 401–430), and for arbitrary ellipticity the EMF associated with unstable horizontal modes. Mixed resonance between unstable hydrodynamic and magnetic modes and resonance between unstable and oscillatory horizontal modes both lead to a non-vanishing mean EMF which grows exponentially in time. The essential conclusion is that interactions between unstable eigenmodes with the same wave-vector $\mathbi{k}$ can lead to a non-vanishing mean EMF, without any need for viscous or magnetic dissipation. This applies generally (and not only to the elliptic instabilities considered here).
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献