Abstract
The natural simplifying assumptions often put forward in the theoretical investigations of the magnetohydrodynamic turbulence are that the turbulent flow is statistically isotropic, homogeneous and stationary. Of course, the natural turbulence in the planetary interiors, such as the liquid core of the Earth is neither, which has important consequences for the dynamics of the planetary magnetic fields generated via the hydromagnetic dynamo mechanism operating in the interiors of the planets. Here we concentrate on the relaxation of the assumption of statistical stationarity of the turbulent flow and study the effect of turbulent wave fields in the Earth’s core, which induces non-stationarity, on the turbulent resistivity in the non-reflectionally symmetric flow and the geodynamo effect. It is shown that the electromotive force, including the so-called α-effect and the turbulent magnetic diffusivity η¯, induced by non-stationary turbulence, evolves slowly in time. However, the turbulent α¯ coefficient, responsible for the dynamo action and η¯ evolve differently in time, thus creating periods of enhanced and suppressed turbulent diffusion and dynamo action somewhat independently. In particular, periods of enhanced α¯ may coincide with periods of suppressed diffusion, leading to a stable and strong field period. On the other hand, it is shown that when enhanced diffusion occurs simultaneously with suppression of the α-effect, this leads to a sharp drop in the intensity of the large-scale field, corresponding to a geomagnetic excursion.
Funder
National Science Center
Ministry of Science and Higher Education
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献