Computations of fully nonlinear hydroelastic solitary waves on deep water

Author:

Guyenne Philippe,Pǎrǎu Emilian I.

Abstract

AbstractThis paper is concerned with the two-dimensional problem of nonlinear gravity waves travelling at the interface between a thin ice sheet and an ideal fluid of infinite depth. The ice-sheet model is based on the special Cosserat theory of hyperelastic shells satisfying Kirchhoff’s hypothesis, which yields a conservative and nonlinear expression for the bending force. A Hamiltonian formulation for this hydroelastic problem is proposed in terms of quantities evaluated at the fluid–ice interface. For small-amplitude waves, a nonlinear Schrödinger equation is derived and its analysis shows that no solitary wavepackets exist in this case. For larger amplitudes, both forced and free steady waves are computed by direct numerical simulations using a boundary-integral method. In the unforced case, solitary waves of depression as well as of elevation are found, including overhanging waves with a bubble-shaped profile for wave speeds $c$ much lower than the minimum phase speed ${c}_{\mathit{min}} $. It is also shown that the energy of depression solitary waves has a minimum at a wave speed ${c}_{m} $ slightly less than ${c}_{\mathit{min}} $, which suggests that such waves are stable for $c\lt {c}_{m} $ and unstable for $c\gt {c}_{m} $. This observation is verified by time-dependent computations using a high-order spectral method. These computations also indicate that solitary waves of elevation are likely to be unstable.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3