Method for Solving the Problem of Load Movement over the Ice Cover of a Reservoir along a Complex Trajectory

Author:

Galaburdin A. V.1ORCID

Affiliation:

1. Don State Technical University

Abstract

Introduction. The development of the polar regions of the World Ocean contributed to an increased interest in studying wave processes in water bodies with ice cover caused by the action of a mobile load. In most papers of domestic and foreign scientists, the ice sheet was considered as an elastic or viscoelastic plate loaded with a rectilinearly moving vertical force. However, when modeling the impact of vehicles on the ice cover, it is of interest to investigate problems in which the force moves along a more complex trajectory. Therefore, this study aims at developing a method for studying the behavior of the ice cover under the action of a force moving along a trajectory of a complex shape, obeying an arbitrary law of motion.Materials and Methods. A method for solving problems of the action of an arbitrarily moving force on the ice cover of a reservoir of finite depth filled with an inviscid incompressible fluid is proposed. The ice cover was considered as a viscoelastic plate lying on the surface of a liquid in a state of potential flow. A concentrated force moving along an arbitrary closed trajectory and being periodic in time was applied to the upper surface of the plate. Hydrodynamic pressure acted on the lower surface of the plate from the liquid side. Due to the periodicity of the load applied to the plate, an integral time transformation was used to solve differential equations describing the behavior of this system. Further, using traditional methods, formulas were obtained for calculating stresses and displacements in the plate and components of the velocity vector of liquid particles. These formulas were presented in the form of an iterated integral. Numerical methods were used to calculate integrals.Results. Calculations showed that the deflection of the ice cover increased markedly with the growth of speed and tangential acceleration of the load movement. An increase in the relaxation time of ice and a decrease in the radius of the trajectory of the load also caused an increase in deflection. The distribution of the fluid particle velocity vector over the depth of the reservoir was calculated.Discussion and Conclusions. The proposed method has shown its efficiency in solving problems about the impact of a moving load on the ice cover of a reservoir. With its help, the influence of the curvature of the trajectory of motion and the mechanical properties of ice, the kinematic characteristics of the movement of the load on the deflection of the ice cover was investigated. The method simulates the impact of vehicles on the ice cover of a reservoir. The results of its application can be used under the construction of ice roads or airdromes on ice.

Publisher

FSFEI HE Don State Technical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3